Charlie Guo’s thoughts on programming and AI.
Code has historically been something with a very high upfront cost to create and nearly zero cost to distribute. That’s defined much of the economic models of Silicon Valley – VC-funded startups invest heavily in creating products that can scale near-infinitely.
But we’re turning that model on its head with the ability to create software for a fraction of what it used to cost. And as someone who (at least in part) considers himself a craftsman, I’m learning to embrace cheap, single-use code. I’m not sure how I feel about it – we’re now dealing with the environmental consequences of single-use physical products, despite their convenience. But there’s something fundamentally different about writing a script you’ll use once and throw away versus carefully architecting a system meant to last for years.
What’s more, writing custom software that works used to be only within the domain of software engineers who had either formally studied or had invested hours into teaching themselves the arcane knowledge of compilers, networking, algorithms, and more. Everyone else had to use off-the-shelf products or “no code” platforms that heavily constrained what you could do – like going from a full palette to a paint-by-numbers system.
Now, almost anyone with a bit of product sense can ship something new. Indie hackers don’t have to worry about hiring a whole dev team to get to an MVP, and designers and PMs can vibe code internal prototypes in an afternoon. None of this code will be perfect, but I think that’s sort of the point – it’s an entirely different beast from the type of code I’m used to working with. And I’m reasonably sure I’m going to have to evolve my way of working.
So what happens when AI starts to think—disposable code is all humans want? Do we end up polluting the knowledge base for LLMs just like we did with our environment?